Analyzing gene regulatory networks by
comparing the dynamics obtained via DSGRN
(Dynamic Signatures Generated by Regulatory

Networks) and RACIPE (Random Circuit
Perturbation)

By Aaron Scheiner and Prince Rawal

Under Konstantin Mischaikow and Marcio Gameiro

Week Four

O

DSGRN database

b1 <ugy < y2bh 2

Morse
Graph

Morse
Graph

Essential Nodes and Their Neighbors

ORGANIZING THE INFORMATION

Parameter Graph: Region of Parameter Space & Dynamics

Morse
Graph

Yoty 2 < €2y < ug,

Morse
Graph

Morse
Graph

Morse
Graph

Morse
Graph

Morse
Graph

Morse
Graph

021 < €12 <upo

—

b0 <mbay <ups

—

120 <upa <mbay

Project Progtress:

This week we became more familiar with the coding side of DSGRN. I
myself had to get a cluster from OARC to use DSGRN on that cluster.
Later, we worked on the code provided by Marcio to run DSGRN while
considering essential parameters and their neighbors. We played with

DSGRN to get a better understanding of the application. Finally, we ran
tests to get data from DSGRN in order to compare RACIPE and DSGRN.

TS

o
A IB

Essential Nodes and Their Neighbors:

€21 Uz 1 .291.‘ . ‘ . .
Morse ®*| Morse Morse Morse
Graph Graph Graph Graph

) o

a1 < 2l o o 2 ¢ ® O | N Y
Morse ®| Morse Morse Morse Morse Morse
Graph IGraph IGraph Graph Graph Graph

» a T @ o 8]

ral1,2 < €2 u2

) Morse Morse Morse Morse
Graph Graph Graph Graph

11021 < 12

< w2 < mbay <ua—li2 <ur2 <mba,

* Essential nodes are where the links have probability to be both active and
inactive.

* Neighbors are the 15 adjacent nodes to the essential nodes.

n
“H

m
“H

c):

EssentialNode(node_sp

[

node_spec.strip().endswith('E") node_spec.count(':") 2:

GetEssentialParameterNeighbors(parametergraph):

net_spec - parametergraph.network().specification()

nodes_spec net_spec.strip().split('\n")

len(nodes_spec) parametergraph.dimension()

num_ess_nodes len([spec spec nodes_spec EssentialNode(spec)])

num_ess_nodes parametergraph.dimension():

[1, [

ess_nodes_spec = EssentialNode(spec) spec - e E- spec

ess_net_spec "\n'.join(ess_nodes_spec)

DSGRN.Network(ess_net_spec)
DSGRN.ParameterGraph(ess_network)

ess_network
ess_parametergraph

ess_par_indices []
ess_par_neighbors = setf()
ess_pindex range(ess_parametergraph.size()):
ess_par - ess_parametergraph.parameter(ess_pindex)
full_pindex - parametergraph.index(ess_par)
ess_par_indices.append(full_pindex)

p_index parametergraph.adjacencies(full_pindex):
ess_par_neighbors.add(p_index)

ess_par_neighbors.difference_update(ess_par_indices)

ess_par_indices, List(ess_par_neighbors)

nodes_spec]

Getting the Essential Parameters
and Their Neighbors:

Construct the essential network and its
parameter graph.

Get the indices of essential parameters and its
neighbors.

Find the essential nodes and their indices in the
original parameter graph.

Similarly, get the neighbors and remove the
neighbors that are also essential nodes.

Results for Toggles Switches:

- 0O > x m

» 4 » O

DSGRN

Essential |Neighbors [Both |All but both |All
Mono 0 = = = 8
Bi 1 0 1 0 1
Total 1 4 5 4 9
TS1SA |Essential [Neighbors [Both [All but both |All
Mono 0 22 22 46| 68
Bi 8 26 34 12| 46
Tri 6 0 6 0 6
Total 14 43 62 58| 120
TS2SA |Essential [Neighbors [Both [All but both |All
Mono 0 112 112 448| 560
Bi 46 256 302 352 654
Tri 102 144 246 16| 262
Tetra 28 43 76 28| 104
Penta 20 0 20 0] 20
Total 196 560 756 844| 1600

mo P> 4 2 maOo > m o

TS Essential |Neighbors(Both |All but both |All

Mono 0 100 80 100| 88.89
Bi 100 0 20 0| 11.11
Total 100 100 100 100(100
TS1SA |Essential |Neighbors|Both [All but both |All

Mono 0 45.83| 35.48 79.31| 56.67
Bi 57.14 54.17| 54.84 20.69| 38.33
Tri 42.86 0 9.68 0 5
Total 100 100 100 100(100
TS2SA |Essential |Neighbors|Both [All but both |All

Mono 0 20f 14.82 53.08 35
Bi 23.47 45.71| 39.95 41.71| 40.88
Tri 52.04 25.71| 32.54 1.9| 16.38
Tetra 14.29 8.57| 10.05 3.32| 6.5
Penta 10.2 0 2.65 0| 1.25
Total 100 100 100 100(100

TS

RACIPE

Percentile
Mono 80
Bi 20
Total 100
TS1SA |Percentile
Mono 43
Bi 50
Tri 1
Total 100
TS2SA |Percentile
Mono 28
Bi 59.27
Tri 12.36
Tetra 0.18
Penta 0.18
Total 100

Next Steps:

Our next step will be to see if we can figure out the possible reasons for the difference
between the data generated by both applications. We will try to run RACIPE and
DSGRN on some other basic models to get a better understanding of what is going
on. Also, we can try to figure out if the half-functional rule is the reason for these
differences and see if essential nodes and their neighbors are the right method for
reproducing the half-functional rule, to replicate RACIPE’s sampling methods, in
DSGRN.

Thank You for Listening!

and

Thank you to the 2020 David and Dorothy Bernstein
Endowed Scholarship for Summer Research and
Aresty Research Center for supporting our research
this summer!

