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Abstract

In this research project, we are studying the analyses generated by Huang et al. using random
circuit perturbation (RACIPE). After gaining a comprehensive understanding of Huang's paper, we
use RACIPE to reproduce these results. We move from there to produce analogous results in
DSGRN. After both sets of results have been generated, we will compare our RACIPE results to
our DSGRN results. The results of the comparisons between our RACIPE and DSGRN results
could potentially lead to a paper describing the results and could also lead to additional problems
that could be studied during the research project or afterwards.

Introduction

Gene regulatory networks (GRNs) are networks formed from pairwise interactions between
molecular regulators, including proteins, genes, and signaling molecules [1]. Understanding GRNs
could lead to the targeting of many diseases without the dangerous side effects that characterize
plenty of modern drugs [1]. When modeling GRNs, the most popular approach is the ordinary
differential equation (ODE) method. These methods “provide a good quantitative match and are
easily generalized” in the method landscape [1]. The major hurdle when using ODE methods is the
necessity for a multitude of kinetic parameters [1]. Random circuit perturbation (RACIPE) is a
method for modeling GRNSs that circumvents this hurdle by random sampling and the generation of
a great number of models. RACIPE is a popular method capable of handling larger networks.
Another method that circumvents the hurdle is Dynamic Signatures Generated by Regulatory
Networks (DSGRN). DSGRN combines the Boolean and ODE modeling methods for a valuable
and mathematically rich GRN modeling method. DSGRN avoids the problem of needing many
kinetic parameters by computing course information about the dynamics of a network. Coarse
information means regions in phase space that likely contain invariant sets including fixed points,
periodic orbits, etc. By computing coarse information, DSGRN can give information about the

dynamics of a network for all parameter values via parameter space decomposition.

Backeround Information

Huang et al. assert in [4] that the core gene circuit in a gene regulatory network determines
the dynamics of the network, not the kinetic parameters. To this effect, RACIPE generates many
random kinetic models from a fixed circuit topology. Specifically, RACIPE:

e Randomizes all key parameters in set ranges, except the threshold values



e Solves the rate equations, which are comprised of Hill functions and additional (g, k)
parameters
e Finds steady states

e Repeats the process
After the models have been generated, statistical analysis is employed to determine robust dynamical

properties about the input gene circuit [4]. This process is visualized below:
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Fig. 1. The process of random circuit perturbation (RACIPE) [4].

Meanwhile, DSGRN makes use of combinatorics and algebraic topology when modeling
GRN . It focuses on “multi-level discrete maps—a direct generalization of Boolean maps—that are
compatible with an ODE system” [1]. In particular, they “propose that only the asynchronous
updates of these discrete maps have biological meaning” [1]. They then look at a “class of ODEs
that can be viewed as a continuous parameterization of a family of multi-level discrete maps” [1].



DSGRN models the dynamics of gene regulatory networks as a system of equations
expressed in terms of step functions with one step discontinuity, which represents approximations
for Hill function models of the dynamics. The software computes the parameter graph for an input
regulatory network. For each node of the parameter graph, DSGRN can find the associated morse
graph, whose nodes are nontrivial strongly connected path components. These morse nodes
represent stable recurrent dynamics for each parameter. The collection of morse graphs for each
parameter in the parameter graph is referred to as a “DSGRN database” [1].

Methods
A. Notation and Circuitry

2.1. Regulatory networks.

Definition 2.1. A regulatory network RN = (V| E) is an annotated finite directed graph
with vertices V.= {1,...,N} called network nodes and annotated directed edges E C V x
V x {—,} called interactions. An — annotated edge is referred to as an activation and an -
annotated edge is called a repression. We indicate that either i — j or i - j without specifying
which by writing (i,7) € E. We allow for self-edges but admit at most one edge between any
two modes, e.g., we cannot have both i — j and i 1 j simultaneously. The set of sources and
targets of a node n are denoted by

S(n):={i| ({i,n) € E} and T(n):={j|(n,j) € E}.
Fig. 2. The DSGRN definition of regulatory networks [2].

The above passage explains the notation of constructing graphs to model GRNs.
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Fig. 3. Three toggle switch motifs varying in the amount of self-activating edges present and the number of nodes
in their respective parameter graphs [4].

These are the three toggle switch motifs that we used when comparing RACIPE and
DSGRN. Based on the passage above, these networks are comprised of two network nodes, or
genes, that each inhibit the other. The difference between each of the models is the amount of self-
activating edges. The equations that will be discussed are the equations corresponding to the TS
network. The data generated and shown in tables corresponds to the TS2SA network. These toggle
switch motifs are classical circuits of gene regulatory network architecture that form the basis for
many complex networks [5]. The TS network works well in DSGRN, as it allows us to simulate the

effects of compounds.

B. Equations



RACIPE employs deterministic rate equations to model input core gene circuits [4]. These
rate equations are comprised of three parts: basal production rate, one or more Hill functions, and
degradation rate. The Hill functions are non-linear shifted Hill functions, which in turn are made up
of an inhibitory Hill function and the switching mechanic formed by the fold change and the fold
change subtracted by one [4]. For the simplest toggle switch, the rate equation appears in the paper
as follows:

A= g.H®(B, BAy, 1y, Agy) — k,A
B = g,H'(A, AB,, Maps Asp) — kB |

Eq. 1. The unexpanded rate equations for TS [4].

Here, H® is the non-linear shifted Hill function. Here are the rate equations are fully expanded:

A =g, (A ga+ (1- 175 (1/(1+(B/BAy)"B4)))- k,A

B =gg(A"ap + (1- A7) (1/(1+(A/AB,)"4)))- kB
Eq. 2. The expanded rate equations for TS.

In these equations, gg refers to the basal production rate (the production rate without any
regulator bound to the promoter) of B and ks means the innate degradation rate of B. A7 x5 is the
maximum fold change of the level of gene B caused by the inhibition of gene A. This value ranges in
[0, 1). In the case of activation, A* s is greater than 1. The threshold is denoted by ABy [4]. The nas
term is the Hill coefficient (a major component in the comparison between DSGRN and RACIPE).

ng
The importance of this Hill function comes from (ﬁ) ® If the gene is above the threshold, then
0

A
ABg

(W) tends to O (as the Hill coefficient increases). If the gene is below the threshold,

+ (A

however, the expression tends to 1 (as the Hill coefficient increases). When the expression equals 0,
the production half of the rate equation equals gg*(A™ as). When the expression equals 1, the
production half of the rate equation equals gg. This becomes extremely important when the
degradation term of the rate equation is greater than one and less than the other. In such a case,
gene A being above or below the threshold determines the sign of the rate equation. This will prove
relevant when looking at the mathematics underlying DSGRN. The above information is true for

the variables in the A rate equation as well [4].



Toggle-switch circuit (TS):
A=G H°(B,BA,n, A, )k, A
B=G,H*(4,4B,,n,,A,,)-k,B
Toggle-switch circuit with one-sided self-activation (TS1SA):

A=G,H*(B,BA,,ny,, Az )H* (A, AA,n,,, AL I AL, —k,A
B=G,H*(A,AB,,n,,,A,,)—k,B

Toggle-switch circuit with two-sided self-activation (TS2SA):

A=G H*(B,B4,,n,,, A, YH(A,44,,n A} )/ A, —k A
B=G,H"(4,4B,,n,,A,,)H’(B,BB,,n,,,A)/ A, —k,B
Eq. 3. The unexpanded rate equations for TS.

Eq. 4. The unexpanded rate equations for TSISA.
Eq. 5. The unexpanded rate equations for TS2SA [4].

The above equations are the unexpanded rate equations for the three toggle switch motifs
used in the comparison. These equations will prove relevant when we connect RACIPE’s Hill

functions to DSGRN’s rate equations.
DSGRN includes all possible parameter values by mapping over parameter space.
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Here, we can see how DSGRN models TS, the toggle switch with no self-activation:

lip+612if x; <04,
X1 = —Y1%1 + A ,(x5) = —y1x +{ ’ N ’
1 Y1X1 1,2( 2) Y1X1 L, if x> 65,



L1+ 651 0f X, <0,
Xo = —VoXy + A, 4(x1) = —Y,x +{ ’ N ’
2 YV2X2 2,1( 1) Y2X2 Ly if x> 0,4

Eq. 6. DSGRN TS step functions.

In the TS patrameter space visualization shown above, u = [ + §. These step functions are
related to RACIPE’s rate equations, particularly when examining the Hill function component. The
two options of a gene being above or below the threshold are shown in RACIPE and DSGRN.
Thus, the data used in RACIPE simulations and the simulation outputs can be used in DSGRN. In
regard to the Hill coefficient, DSGRN treats the Hill coefficient as infinity. Thus, DSGRN uses a
step function. RACIPE, however, favors lower (and more biologically relevant) Hill coefficient
values, so the inequalities that define DSGRN cannot be formed from RACIPE’s rate equations.

For each parameter node in the parameter space, DSGRN generates a morse graph based on
the inequalities associated with that parameter node.
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Fig. 5. DSGRN morse graph computation for one TS parameter node.

The above figure shows the steps taken to output the morse graph. Firstly, a rook field is
constructed based on the inequalities, with the two genes as the x and y axes. The red arrows are
first added to show the direction of each region of the rook field, which is synonymous with phase
space. After adding the purple nodes and edges, we observe the direction of the graph and form a
state transition graph, in which the node with only incoming edges is called a recurrent component
or a stable fixed point. These points led to the generation of the morse graph. As you can see in the
3x3 visualization of the parameter space of the TS network, the middle parameter node has two
fixed points. The number of fixed points gives us information about the kind of stability in that
parameter region. In the parameter space for the TS network, the middle parameter node is bistable,

and all the other nodes are monostable.

C. RACIPE Sampling



Min to Max Mean, Stapdard
Deviation Mean
Parameters Values . ;
I (Rectified (Exponential)
(Uniform) % ian)*
Maximum production rate (G ) 1-100 50.5, 49.5 50.5
Degradation rate (k) 0.1-1 0.55,0.45 0.55
Fold change (4)* 1-100 50.5, 49.5 50.5
The ranges, which depend on the inward regulations,
e 00 are estimated by a Monte Carlo simulation.
Hill coefficient (7 )* 1-6 35,25 35

Table 1. RACIPE sampling [4].

Aside from the threshold values, RACIPE samples its parameters in set ranges, though the
fold change requires explanation as denoted by “*””. When it is an activating edge, the fold change
ranges in 1-100. For an inhibiting edge, the fold change ranges between 0.01-1 [4]. RACIPE allows
the user to affect the simulation in a variety of ways, including changing parameter ranges. When
running RACIPE simulations to compare to DSGRN, we changed the Hill coefficient constantly.
For the threshold values, RACIPE employs the “half-functional rule,” which samples the threshold
values such that “each regulatory link should have roughly equal chance of being functional or not
functional” [4]. Thus, the thresholds are sampled such that the level of a gene at the steady states is
equally likely to be above or below its threshold level. The half-functional rule was included because,
“if the threshold level is too large or too small, the regulatory link is either not functional most of
the time or constitutively active, thereby changing the effective circuit topology, and limiting the
comprehensive understanding of circuit function” [4].

D. Testing and Simulations
For our RACIPE simulations, we changed parameter ranges and important values in the

program. These included the Hill coefficient range (labeled minN and maxN), the number of models
generated by RACIPE (num_paras), the number of initial conditions to solve the ODE (num_ode),
and the ODE solver used (1 for the Euler ODE solver and 2 for the Runge-Kutta-Fehlberg (RK45)
method). In general, we decided to set both minN and maxN to the same value, and we chose the
following values: 2, 4, 6, 10, 20, 30. The first three are more biologically relevant, and the last three
are closer to the results we would receive from DSGRN. Regarding the number of models, we set
num_paras to either 1000 or 10000 (100 by default). For the TS network, we used 1000 models, and
for TS1SA and TS2SA, we used 10000 models. Our computations were mostly focused on TS2SA,
as it exhibits the most complex behavior and the highest levels of stability. Thus, for most of our
computations, num_paras = 10000. The num_ode value was usually 1000 in our simulations, though
we also tried 500 and 2000 to see if changing it led to any significant differences. We initially used
the faster Euler ODE solver before moving to the more precise RK45 solver. In terms of how the
results actually display, RACIPE outputs the number of models with each type of stability. It also
outputs the running time for each simulation. For Hill coefficient values within the default range, the
ratio between monostability and bistability is roughly 4:1 for the TS network. Increasing the Hill



coefficient leads the ratio to approach 1:1. In general, increasing the Hill coefficient increases the
percentages of higher levels of stability.

DSGRN is more variable than RACIPE, and we can use it to output a variety of result
formats depending on what we want to see. For example, one can use DSGRN to output morse
graphs, stability percentages, stability counts, parameter inequalities, and more. We began by trying
to get the stability percentages to compare to our RACIPE data. Unlike RACIPE, which uses
random sampling, DSGRN’s stability percentages are fixed.

E. Essential Parameters
We set out to test out the results generated by Huang et al. in DSGRN. This entails adapting
RACIPE’s half-functional rule in DSGRN. We decided to adapt the half-function rule in DSGRN
by using essential parameters and their neighbors. Essential parameters are parameter nodes where
the edges have probability to be both active and inactive. The neighbors are adjacent nodes to
essential nodes. Thus, for the 3x3 parameter space visualization of the TS network, including only
the essential nodes and their neighbors (though there is only one essential node) yields the following

parameter regions:
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Fig. 6. TS essential parameter node and its neighbors.

Here, the bistable node in the middle is the essential node. There, the threshold value is in
between the upper and lower values. Therefore, one gene’s level being above or below the threshold
determines whether or not that gene is inhibiting the other. This also determines the sign of the rate
equation output for the other gene. Therefore, that middle bistable node is the essential node, and

the four adjacent nodes are its neighbors.

F. Weighting DSGRN with RACIPE data
After generating our initial tables for RACIPE and DSGRN data, we sought to use DSGRN
to interpret the RACIPE outputs. By using Lun Zhang’s code, we were able to connect the outputs
of RACIPE to the terms of parameter inequalities in DSGRN. This goes back to the relationship
between DSGRN’s step functions and RACIPE’s rate equations containing Hill functions. To find



the parameter nodes that the RACIPE models belong to, we require the three parts of the inequality
above, which we will refer to as L, U, and T. We get these from the parameters that go into the rate
equations. For inhibition, the fold change ranges from 0.01 to 1, so L = g*A. Then we get U = g.
The T value of the inequality represents the threshold times the degradation. Thus, it would be the
threshold (ABo, BAo, AAo, or BBy) times the degradation rate of the gene listed second in the
threshold. For self-activation, which is the only type of activation we are concerned with, the
differences arise with the L and U values. Since the fold change now ranges from 1 to 100, L = g
and U = g*A.

When a gene has two inward edges (including self-activating edges), we must split the basal
production rate g between the two Hill functions in the rate equation. We decided to split g into \/E

and ./ g, though g and 1 work as well with no change in the results. We tested to make sure both

ways of splitting g resulted in the same results on the TS1SA network, and both ways yielded
identical results.

In terms of what we did with the RACIPE data in DSGRN, we sorted the RACIPE models
based on their respective parameter nodes using the Lun Zhang’s code. From there, we weighted
parameter nodes with a nonzero amount of RACIPE models and calculated the stability of each of
these parameters. Finally, we added all of the monostable parameters’ weights and did the same for
the other four types of stability. In the second result table, there is a row that shows the percentages
after this procedure was done on RACIPE TS2SA data with 10000 models, the RK45 solver, and
the default Hill coefficient range of 1 to 6. This represents the result of weighting, and its
significance will be explained in the results section.

Results
The following result concerns the effect of the number of initial conditions to solve the
ODE. The labels for percentages of each type of stability list 1 followed by a percent sign to denote
monostability and that it is a percentage and not a count. Hence, the next column represents the
percentage of bistability among the models, and this trend continues to pentastability. These results
show that changing num_ode does not really affect the stability percentages, though the running
time does scale linearly with num_ode.

model solver num_paras minN/maxN num_ode stable: 1% stable: 2% stable:3 % stable:4 % stable:5% running time (seconds) running time (hours)
TS2SA 2 10000 30 500 7.86 45.75 4134 3.89 116 3272.614021 0.909059
TS2SA 2 10000 30 1000 7.78 45.01 41.79 4.14 1.28 6752.532845 1.875704
TS2SA 2 10000 30 2000 7.94 45 41.78 4.23 1.05 12383.88167 3.439967

Table 2. The effects of the number of initial conditions to solve the ODE.

The table below contains the main findings to date. For this table, we need only focus on the
rows where num_paras = 10000 and the rows under those. Here, we can see the effects of changing
the Hill coefficient. Additionally, the DSGRN TS2SA stability percentages are attached. This table
leads to some important conclusions. Firstly, for TS2SA, increasing the Hill coefficient leads to a
decrease in the monostability percentage and increases in the tristability, tetrastability, and
pentastability percentages. We came to the conclusion that the Hill coefficient’s impact on the

percentages weakens for N = 20. As DSGRN treats the Hill coefficient as infinity, we see that the
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RACIPE percentages at N = 20 and N = 30 are comparable to the DSGRN data, particularly the
data for the 756 essential and neighbor nodes. Moreover, the DSGRN weighting percentages are

very close to the high N RACIPE data. The importance of this closeness will be elaborated upon in

the conclusion. Additionally, the third to last row reiterates the fact that essential parameters have

0% monostability.

model solver num_paras minN/maxN num_ode stable:1% stable:2% stable:3% stable:4% stable:5% running time (seconds) runningtime (hours)
TS2SA 2 1000 2 1000 42.3 53.5 4.2 0 0 633.454939 0.17596
TS2SA 2 1000 4 1000 15.6 65.4 18.3 0.6 0.1 609.400952 0.169278
TS2SA 2 1000 6 1000 12.4 58.4 28.1 0.9 0.2 656.392266 0.182331
TS2SA 2 1000 10 1000 11.5 49.2 36 2.9 0.4 593.235701 0.164788
TS2SA 2 1000 20 1000 7.7 45.5 42.6 3.5 0.7 593.999812 0.165
TS2SA 2 1000 30 1000 6 46.8 42.2 4 1 682.994314 0.189721
TS2SA 2 10000 2 1000 41.47 54.51 3.98 0.04 0 6090.806487 1.691891
TS2SA 2 10000 4 1000 16.17 63.98 19.43 0.37 0.05 6273.187259 1.742552
TS2SA 2 10000 1000 11.48 59.36 27.93 1.1 0.13 6246.457913 1.735127
TS2SA 2 10000 10 1000 9.54 53.98 33.94 2.14 0.4 6529.467236 1.813741
TS2SA 2 10000 20 1000 8.42 47.72 39.7 3.45 0.71 7375.943426 2.048873
TS2SA 2 10000 30 1000 7.78 45.01 41.79 4.14 1.28 6752.532845 1.875704
TS2SA 2 10000 1to6 DSGRN Weighting 10.07 39.96 48.04 1.66 0.27

TS2SA DSGRN (196 Essential) 0 23.469388 52.040816 14.285714 10.204082

TS2SA DSGRN (756 Essential + Neighbors) 14.814815 39.94709 32.539683 10.05291 2.6455026

TS2SA DSGRN (1600 Parameters) 35 40.875 16.375 6.5 1.25

Table 3. The primary results table with both RACIPE and DSGRN stability percentages.

Conclusions
A major point of comparison between DSGRN and RACIPE is the time cost to run
networks. DSGRN runs instantaneously. Meanwhile, as demonstrated in the graph below, the
average time to run a model in RACIPE scales linearly with the total number of parameters in the
model, as demonstrated in the figure below [3].
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Fig. 7. Graph showing that average time cost to simulate a RACIPE model scales linearly with the number of
parameters in the model [3].

The weighting percentages from the table, which were generated in DSGRN with RACIPE
data with low Hill coefficients, are close to the RACIPE data for high Hill coefficients. Thus,
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weighting in DSGRN with sampling from RACIPE yields comparable results to RACIPE with far
quicker computations. Hence, with additional work we hope to show that DSGRN can achieve
comparable results to RACIPE for a fraction of the computational cost of RACIPE.

Future Work

The current low-dimensional results bode well for the future. We will begin combining
weighting with essential parameters and their neighbors. This entails observing how many RACIPE
models were in essential parameters, their neighbors, and parameters that are not essential nor
neighbors of essential parameters. The parameter nodes with the highest RACIPE model counts are
of particular concern. Additionally, weighting will be done when N = 2, 4, 6, 10, 20, 30 for all three
toggle switches. Following the generation of these results, we will observe the conclusions the
comparisons yield. Depending on the conclusions, we can take the project in a new direction, such
as applying these ideas to networks of biological interest, understanding how to sample for large
networks, understanding how to apply these ideas to a broader range of dynamics, computing
volumes of the DSGRN regions of parameter space, or understanding how the regions change as a
function of more realistic parameters.
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