Optimal Algorithms for the Implementation of Group Strategies

Aubrey Hormel Mentor: Dr. Jingjin Yu

General Idea

Agents move from initial positions to some target formation on a connected graph

- Optimize total distance travelled
- Avoid collision

Problem is made simpler when agents are indistinguishable

Determining Distance-Optimal Paths

• Construct a matrix representing distance (shortest path) from initial and final positions

	<i>v</i> ₄	v_5	v ₆
v_1	5	6	6
v_2	4	5	5
v_3	4	5	5

• Use the Hungarian algorithm to determine best assignment

Path Scheduling: Avoiding Collision

Assign different start times:

- Agents are scheduled to begin moving along the graph according to their path lengths and whether or not their assigned goal is a standalone vertex
- Maximum amount of time for all agents to reach goal is n + I -1, where
 - n is number of agents
 - I is longest distance between all initial and respective final positions

Implementing Specific Group Strategies

- Surrounding a target
 - Keeping some desired distance
 - Closing in for capture

Implementing Specific Group Strategies

- Patrolling a perimeter
 - Applicable to above
 - Possible extension to patrolling an area

Implementing Specific Group Strategies

- Dispersion and grouping
 - Transition from some group task to another
 - Agents may be assigned to "teams" with different tasks
 - Add constraints such as a maximum distance between agents

Motivation: System of Autonomous Agents

Use data generated from many specific tasks to train a model with elements of artificial intelligence

References & Acknowledgements

Special thanks to:

Dr. Jingjin Yu, Mentor

National Science Foundation, funding provided through grant ISS-1734419

Reference:

Yu, J., & LaValle, S.M. (2012). Distance Optimal Formation Control on Graphswith a TightConvergenceTime Guarantee, presented at 51st IEEE Conference on Decision and Control, Maui,HA,December 10-13.