Ramsey theory and rado’s numbers

ADRIAN GALICIA
Objective
Objective

- Create an algorithm to compute Rado numbers
Objective

- Create an algorithm to compute Rado numbers
- Implement the algorithm in a web-friendly language (JavaScript, PHP, etc.)
Objective

- Create an algorithm to compute Rado numbers
- Implement the algorithm in a web-friendly language (JavaScript, PHP, etc.)
- Visualizing the computation
Objective

- Create an algorithm to compute Rado numbers
- Implement the algorithm in a web-friendly language (JavaScript, PHP, etc.)
- Visualizing the computation
- Prove the output (Rado numbers) with certificates.
Ramsey Theorem
Ramsey Theorem

- Given some edge-coloring of a complete graph, Ramsey’s Theorem states that there exist monochromatic sub graphs (depending on how many colors are used).
Ramsey Theorem

- Given some edge-coloring of a complete graph, Ramsey’s Theorem states that there exist monochromatic sub graphs (depending on how many colors are used).

- If two colors are used (red & blue), for any positive integers (r,s), there exist a positive integer \(N = R(r,s) \) where a coloring of \(K[N] \) will give \(K[r] \) red or \(K[s] \) blue.
Ramsey's Theorem

- Given some edge-coloring of a complete graph, Ramsey's Theorem states that there exist monochromatic sub graphs (depending on how many colors are used).
- If two colors are used (red & blue), for any positive integers \((r, s)\), there exist a positive integer \(N = R(r, s)\) where a coloring of \(K[N]\) will give \(K[r]\) red or \(K[s]\) blue.
- The \(R(r, s)\) is smallest integer \(N\) for which the theorem holds.
Ramsey’s Theorem example
Rado number
Rado number

- Given some equation “E” such as $x+y = z$ and some number of colors “r” ($r=2$, red and blue in this case), find the N so that there is no way to color 1 through N without a solution to the equation E of the same color.
Given some equation “E” such as \(x+y = z \) and some number of colors “r” (\(r=2 \), red and blue in this case), find the \(N \) so that there is no way to color 1 through \(N \) without a solution to the equation \(E \) of the same color.

This is analogous to \(N=R(r,s) \), like \(R(3,3)=6 \). As showed in the graph, \(K[5] \) is the smallest number you can color and avoid monochromatic \(K[3] \).
Rado number example

\[x + y = z \]
Rado number example

- $N = 1$

1 1

$x + y = z$
Rado number example

- \(N = 1 \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[x + y = z \]
Rado number example

<table>
<thead>
<tr>
<th>(N = 1)</th>
<th>(\begin{array}{cc} 1 & 1 \end{array})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 2)</td>
<td>(\begin{array}{ccc} 1 & 2 & 1 \end{array}) (\begin{array}{cc} 2 & 1 \end{array}) (\begin{array}{cc} 1 & 2 \end{array}) (\begin{array}{cc} 1 & 2 \end{array})</td>
</tr>
</tbody>
</table>

\(1+1 = 2 \) \(1+1 = 2 \)
Rado number example

- $N = 1$
 - $1 + 1 = 2$
 - 1 1

- $N = 2$
 - 12 1 2
 - 1 2
 - 12
Rado number example

- $N = 1$
 \[
 \begin{array}{ccc}
 1 & 1 \\
 \end{array}
 \]

- $N = 2$
 \[
 \begin{array}{ccc}
 1 & 2 & 1 \\
 \end{array}
 \]

- $N = 3$
 \[
 \begin{array}{ccc}
 1 & 2 & 3 \\
 \end{array}
 \]

$x + y = z$

$1 + 1 = 2$

$1 + 1 = 2$

$1 + 1 = 2$
Rado number example

- $N = 1$
 - $1 + 1 = 2$
 - 1
 - 1

- $N = 2$
 - $1 + 1 = 2$
 - 1
 - 2
 - 1
 - 2

- $N = 3$
 - 1
 - 2
 - 3
 - 1
 - 2
 - 3
 - 1
 - 2
 - 3
 - 1
 - 2
 - 3

- $N = 4$
 - 1
 - 2
 - 3
 - 4
 - 1
 - 2
 - 3
 - 4
 - 1
 - 2
 - 3
 - 4
 - 1
 - 2
 - 3
 - 4
Rado number example

- **N = 1**

- **N = 2**

- **N = 3**

- **N = 4**

\[
x + y = z
\]

\[
\begin{array}{c c c c}
1 & 1 & \text{1+1 = 2} & \text{1+1 = 2} \\
1 & 2 & 1 & 2 \\
1 & 2 & 3 & 1 \\
1 & 2 & 3 & 4 \\
\end{array}
\]
Rado number example

- **N = 1**
 - 1+1 = 2
 - 1 1

- **N = 2**
 - 1 2
 - 1 2
 - 1 2 1 2

- **N = 3**
 - 1 2 3
 - 1 2 3
 - 1 2 3
 - 1 2 3

- **N = 4**
 - 1 2 3 4
 - 1 2 3 4
 - 1 2 3 4
 - 1 2 3 4
 - 1 2 3 4

- **N = 5**
 - 1 2 3 4 5
 - 1 2 3 4 5
 - 1 2 3 4 5
 - 1 2 3 4 5
 - 1 2 3 4 5

\[x + y = z \]
Rado number example

- **N = 1**
 - $1+1 = 2$
 -

- **N = 2**
 -

- **N = 3**
 -

- **N = 4**
 -

- **N = 5**
 -

$x+y = z$
Ultimate goal
Ultimate goal

- Make a program that gives out the least Rado number given some equation taken from the user input.
Ultimate goal

- Make a program that gives out the least Rado number given some equation taken from the user input.
- If possible, it will not only work with 2 colors but with 3 or more colors.
Ultimate goal

- Make a program that gives out the least Rado number given some equation taken from the user input.
- If possible, it will not only work with 2 colors but with 3 or more colors.
- It will have a tree stylized output (certificate).
Tree output
Tree output

Ø
Tree output

Ø

1 → 1
Tree output

Ø

1

2

1

2
Tree output
Tree output

Can be omitted. mirror image.
Tree output

Can be omitted.
mirror image.
Can be omitted. mirror image.
Tree output

Can be omitted. mirror image.
Thanks for your attention.