Venn diagrams in hypergraphs

A.Dzavoronok, J.Sosovicka, T.Reizin

1Faculty of Mathematics and Physics
Charles University

DIMACS REU, June 2024
Venn-Diagram

We say that hyper-graph contains k-Venn Diagram if there exist k sets A_1, A_2, \ldots, A_k. Such that each set $B_1 \cap B_2 \cap \ldots B_k$ is non-empty, where B_i is either A_i or its complement for every i.

Our project

How many sets can our hypergraph have if it fails to contain a k-Venn diagram?
This problem is in a way dual to a well known set-up in combinatorics.

VC-dimension

Family $\mathcal{F} \subset \mathcal{P}(n)$ shatters set $S \subset [n]$ if for all $A \subset S$ there exist $B \subset \mathcal{F}$ such that $B \cap S = A$. VC-dimension of \mathcal{F} is then defined as

$$VC(\mathcal{F}) = \max\{|S| : \mathcal{F} \text{ shatters } S\}$$

For $VC(\mathcal{F}) = 2^k$ we get k-Venn diagram.
Sauer-Shelah Lemma

For any set family $\mathcal{F} \subseteq 2^{[n]}$ we have

$$|\mathcal{F}| \leq \sum_{k=0}^{\text{VC}(\mathcal{F})} \binom{n}{k}$$

and the bound is tight.

Example (Attaining the bound)

We can take all subsets of $[n]$ of size less than k. This set system shatters no set of size at least k. Obviously the number of such sets is exactly the bound.
Proof of Sauer-Shelah

Proof from [1].

- We prove a stronger version: \(\mathcal{F} \) shatters at least \(|\mathcal{F}|\) sets.
- We proceed by induction. Base case is trivial.
- Let \(\mathcal{F} \) be a family of at least 2 sets. Fix \(x \in \bigcup \mathcal{F} \) such that \(\exists S \in \mathcal{F} : x \notin S \).
- Let \(\mathcal{F}_1 = \{ S | S \in \mathcal{F}, x \in S \} \) and \(\mathcal{F}_2 = \mathcal{F} - \mathcal{F}_1 \).
- Let \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) shatter \(s_1 \geq |\mathcal{F}_1| \) and \(s_2 \geq |\mathcal{F}_2| \) sets resp.
- Neither \(\mathcal{F}_1 \) nor \(\mathcal{F}_2 \) shatters a set containing \(x \).
- If a set is shattered by \(\mathcal{F}_1 \) xor \(\mathcal{F}_2 \), it is also shattered by \(\mathcal{F} \).
- \(S \) shattered by \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) \(\Rightarrow \) \(S \) and \(S \cup \{x\} \) shattered by \(\mathcal{F} \).
- Thus \(\mathcal{F} \) shatters at least \(s_1 + s_2 \geq |\mathcal{F}_1| + |\mathcal{F}_2| = |\mathcal{F}| \).
Our goals

Notation

We denote $f_k(n)$ as the maximum size of family \mathcal{F} that does not form a k-Venn diagram.

Bounds [2]

\[
\begin{align*}
 f_2(n) &= 4n - 2 \\
 f_3(n) &= \Theta(n^3) \\
 cn^{2^{k-1}-1} &\leq f_k(n) \leq Cn^{2^{k-1}}
\end{align*}
\]

We believe the lower bound is tight. Our goal is to lower the order of the upper bound for $k = 4$ and for greater k.
References

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823748. It is being realized during DIMACS REU 2024.