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Introduction

Venn-Diagram

We say that hyper-graph contains k-Venn Diagram if there exist k
sets A1,A2 . . .Ak . Such that each set B1 ∩ B2 ∩ . . .Bk is
non-empty, where Bi is either Ai or its complement for every i .

Our project

How many sets can our hypergraph have if it fails to contain a
k-Venn diagram?
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Background

This problem is in a way dual to a well known set-up in
combinatorics.

VC-dimension

Family F ⊂ P(n) shatters set S ⊂ [n] if for all A ⊂ S there exist
B ⊂ F such that B ∩ S = A. VC-dimension of F is then defined as

VC(F) = max{|S | : F shatters S}

For VC(F)= 2k we get k-Venn diagram.
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Sauer-Shelah Lemma

Sauer-Shelah [2].

For any set family F ⊆ 2[n] we have

|F| ≤
VC(F)∑
k=0

(
n

k

)
and the bound is tight.

Example (Attaining the bound)

We can take all subsets of [n] of size less than k . This set system
shatters no set of size at least k . Obviously the number of such
sets is exactly the bound.
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Proof of Sauer-Shelah

Proof from [1].

We prove a stronger version: F shatters at least |F| sets.

We proceed by induction. Base case is trivial.

Let F be a family of at least 2 sets. Fix x ∈
⋃
F such that

∃S ∈ F : x ̸∈ S .

Let F1 = {S | S ∈ F , x ∈ S} and F2 = F − F1.

Let F1 and F2 shatter s1 ≥ |F1| and s2 ≥ |F2| sets resp.

Neither F1 nor F2 shatters a set containing x .

If a set is shattered by F1 xor F2, it is also shattered by F .

S shattered by F1 and F2 ⇒ S and S ∪ {x} shattered by F .

Thus F shatters at least s1 + s2 ≥ |F1| + |F2| = |F|.
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Our goals

Notation

We denote fk(n) as the maximum size of family F that does not
form a k-Venn diagram.

Bounds [2]

f2(n) = 4n − 2

f3(n) = Θ(n3)

cn2
k−1−1 ≤ fk(n) ≤ Cn2

k−1

We believe the lower bound is tight. Our goal is to lower the order
of the upper bound for k = 4 and for greater k .
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