A graph game from extremal combinatorics

Jan Soukup, Andrej Dedík Supervised by: Sophie Spirkl

REU 2019, Rutgers University

This research is part of a project that has received funding from the European Union's Horizon

2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.

Notation

- Graph G := Ordered pair (V, E) of vertices and edges.
- $K_n := \text{Clique on } n \text{ vertices. I.e. } K_n = \left(V, \binom{V}{2}\right).$
- Independent set in G is a subset of vertices such that no two of them are connected by an edge.

Independent set

Notation

• *H* is an induced subgraph of *G* if there exists a subset *A* of vertices of *G*, such that *G*[*A*] = *H*.

For a given integers m and $k \ge 2$, and a fixed graph H consider a following game played on a graph G

Definition (Forcing game $\mathcal{F}(H, k, m)$)

We start with a graph G with m vertices and no edges. Then players A and B take turns, as follows:

- Player A either selects an independent set S of size k in G or decides to stop the game.
- Player *B* modifies *G* by adding edges with both ends in *S*; he must add at least one edge, but may add more.

At the end of the game, Player A wins if G contains H as an induced subgraph; and Player B wins otherwise.

- *k* = 3
- $H = K_3$ (triangle)
- *m* = 6

イロト イヨト イヨト イヨト

Example. Turn 1.

J. Soukup, A. Dedík

Image: A matrix

Example. Turn 1: Player A.

J. Soukup, A. Dedík

< 4 ₽ >

Example. Turn 1: Player B.

J. Soukup, A. Dedík

< 47 ▶

Example. Turn 2.

J. Soukup, A. Dedík

イロト イヨト イヨト イヨト

Example. Turn 2. Player A.

J. Soukup, A. Dedík

Image: A matrix

э

э.

Example. Turn 2. Player B.

J. Soukup, A. Dedík

Image: A matrix

Example. Turn 3.

J. Soukup, A. Dedík

イロト イヨト イヨト イヨト

Example. Turn 3. Player A.

э

Example. Turn 3. Player B.

J. Soukup, A. Dedík

э

Example. Turn 4.

J. Soukup, A. Dedík

イロト イヨト イヨト イヨト

Example. Turn 4. Player A.

J. Soukup, A. Dedík

(日) (四) (日) (日) (日)

Example. Turn 4. Player B.

J. Soukup, A. Dedík

(日) (四) (日) (日) (日)

Example. Turn 5.

J. Soukup, A. Dedík

イロト イヨト イヨト イヨト

Example. Turn 5. Player A.

J. Soukup, A. Dedík

Image: A matrix

э

▶ < ∃ >

Example. Turn 5. Player B.

J. Soukup, A. Dedík

Image: A matrix

æ

- ∢ ⊒ →

Example. Player A wins.

J. Soukup, A. Dedík

イロト イヨト イヨト イヨト

æ

Definition

Let N(H, k) be the minimal *m* such that player *A* can always win the game $\mathcal{F}(H, k, m)$. (No matter how the player *B* plays).

Definition (Ramsey number)

Let R(t, k) be the smallest *n* such that every graph on at least *n* vertices contains either K_t or an independent set on *k* vertices.

イロト イヨト イヨト ・

- For every k and H, player A wins for every sufficiently large graph.
 (i.e. N(H, k) < ∞).
- *N*(*H*, *k*) is bounded from above by some function double exponential in *k*.
- $N(K_t, k) = R(t, k)$ (i.e. it coincides with the Ramsey number). And thus it is bounded from below by some function exponential in k.

- Find better bounds for N(H, k).
- Explore other variants of the game. For instance when player A does not see the graph G and may chose to stop the game in his turn and:
 - Player A loses when he choses a set which is not independent and he wins if G contains induced H in the end.
 - Player A loses when he choses a set which is not independent and he wins if G contains induced H any time during the game.
 - Turn is skipped if player A choses a set which is not independent and he wins if G contains induced H in the end.
 - Turn is skipped if player A choses a set which is not independent and he wins if G contains induced H any time during the game.

For these variants it is not even known if player A can always win on sufficiently large graphs.