Circle Packing & The Koebe-Andreev-Thurston Theorem

Alisa Cui

Mentor: Alex Kontorovich

June 4, 2018

(ロ)、(型)、(E)、(E)、 E) の(()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

 Start with three mutually tangent circles

 Start with three mutually tangent circles

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Start with three mutually tangent circles
- Draw two more circles, each of which is tangent to the original three
 - These come from Apollonius

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Start with three mutually tangent circles
- Draw two more circles, each of which is tangent to the original three
 - These come from Apollonius

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Start with three mutually tangent circles
- Draw two more circles, each of which is tangent to the original three
 - These come from Apollonius
- Continue drawing tangent circles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Koebe-Andreev-Thurston Theorem

For a finite, maximal planar graph G, there is a unique (up to circle inversions) circle packing whose tangency graph is isomorphic to G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Dual Circles

くりゃく 聞き ふぼき ふぼう ふりゃ

Dual Circles

Dual Polyhedra

Figure: Ekips39, Wikimedia Commons

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Dual Polyhedra

Integral Packings and Polyhedra

- We are interested in packings in which the *curvature* (reciprocal of the radius), generalized as *bend* in higher dimensions, is integral for every circle
 - From Descartes, Soddy found that if 4 mutually tangent circles have integer bends, then all circles in the packing have integer bends (true for Apollonian packings, but not in general)

- A polyhedron which has some associated integral circle packing is called an *integral polyhedron*
- Can we find and classify all integral polyhedra?

Tetrahedron

The Apollonian packing used as an example previously is integral, making the tetrahedron an integral polyhedron.

Approach

How can we verify that a given packing is indeed integral?
This can be difficult, even with computers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Acknowledgments

Thanks to DIMACS, the Rutgers Math Department, the NSF, and Professor Kontorovich.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ