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Apollonian Circle Packing

I Start with three mutually
tangent circles

I Draw two more circles, each
of which is tangent to the
original three
I These come from

Apollonius

I Continue drawing tangent
circles



Koebe-Andreev-Thurston Theorem

For a finite, maximal planar graph G, there is a unique (up to circle
inversions) circle packing whose tangency graph is isomorphic to G.
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Dual Polyhedra

Figure: Ekips39, Wikimedia Commons



Dual Polyhedra



Integral Packings and Polyhedra

I We are interested in packings in which the curvature
(reciprocal of the radius), generalized as bend in higher
dimensions, is integral for every circle
I From Descartes, Soddy found that if 4 mutually tangent circles

have integer bends, then all circles in the packing have integer
bends (true for Apollonian packings, but not in general)

I A polyhedron which has some associated integral circle
packing is called an integral polyhedron

I Can we find and classify all integral polyhedra?



Tetrahedron
The Apollonian packing used as an example previously is integral,
making the tetrahedron an integral polyhedron.



Approach

I How can we verify that a given packing is indeed integral?
I This can be difficult, even with computers
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