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Apollonian circle packings

What is an Apollonian circle packing?

Here is an illustrative example:
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Crystallographic sphere packings

The Apollonian packing is a type of crystallographic sphere
packing.

This is a sphere packing that can be generated completely by a
series of finite reflections. In a packing, the spheres densely fill
space, and their interiors are disjoint.
In 2 dimensions, all circles are either disjoint or tangent – none of
them intersect.
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Crystallographic sphere packings

Here are some examples of crystallographic packings:



Inversive Coordinates

Inversive coordinates are a convenient way of identifying spheres in
a packing:
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sphere and (x1, ..., xn) is the center of sphere s.
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Sphere Inversions

To generate crystallographic packings, we use sphere inversions
through a ”mirror sphere”. This sends points at a distance of d
from the center of the mirror sphere to a distance of 1/d from the
center of the mirror sphere.

I We apply sphere inversions to both spheres and planes, where
planes are considered spheres of infinite radius.

I Spheres completely outside the mirror sphere will be inverted
to spheres completely inside the mirror sphere, and vice versa.

I Sphere inversions preserve tangencies and angles.
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Sphere Inversions

Here is an example in 2 dimensions:



Sphere Inversions

Crystallographic packings are generated by inversions of a cluster
through its cocluster or dual.

I Circles in the cluster are either tangent to each other or
disjoint

I Circles in the cocluster are either tangent, disjoint, or
orthogonal to the circles in the cluster.



Sphere Inversions

For polyhedral packings, the cluster is the collection of vertices of
the polyhedron, and the dual is the collection of faces of the
polyhedron – In other words, the vertices of the dual polyhedron.
We’ll explain clusters and coclusters for Vinberg coordinates soon.



Hyperbolic geometries

There is a surprising connection between sphere packings and
non-Euclidean geometries.

Euclidean geometry is characterized by
Euclid’s parallel postulate, which states that the angles formed by
two lines intersecting on one side of a third line sum to be less
than π radians.
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Hyperbolic geometries

These geometries have several models which are each used as is
necessary. n-dimensional hyperbolic space, Hn, may be modeled
using:

I The upper sheet model is characterized by all
x ∈ Rn+1 ∪ {∞} satisfying xQxT = −1, x0 > 0 for Q a
(n + 1)× (n + 1) real matrix having exactly 1 negative
eigenvalue and n positive eigenvalues.

I The Klein disk model is the projection of the upper sheet onto
the closed n-dimensional ball . This will be most familiar
through the tesselations of M. C. Escher.

I The upper half-space model consisting of
x ∈ Rn+1 ∪ {∞}, x0 > 0.

Each has its own advantages. The upper half-space model in
particular is relevant to Zack’s work, for example.
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Hyperbolic geometries

Inversions still work; in fact, in Hn+1, they preserve angles,
distances and volumes, and they keep points in side that upper
half-space.
Inversions also have another useful property; b̂b − |bz |2 = −1. As
|bz |2 =

∑
i (bzi )

2, this function f (b, b̂, bz) is a quadratic form on
the set of inversive coordinates, i.e. a polynomial where each term
is of degree two.

The set of inversive coordinates is precisely that
which satisfies b̂b− |bz |2 = −1; hence this quadratic form can also
be used to specify a hyperbolic space: under the upper-sheet
model, Hn+1 is x ∈ Rn+2 with f (x) = −1.
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A fact about inversive coordinates

Consider the circle (b̂, b, bz). We know that its diameter gets
mapped to the diameter of its image under inversion. The new
points on the boundary and the diameter are the images of points
at distance |z | − r and |z |+ r , which get mapped to points at
distance 1

|z|−r and 1
|z|+r , respectively. Thus the new diameter is of

length 1
|z|−r −

1
|z|+r = 2r

|z|2−r2 . This is also equal to 2r̂ , so

r̂ = r
|z|2−r2 ; rearranging gets |z |2 − r2 = r

r̂ = −r b̂. Dividing by

r2 = 1/b2 gives |bz |2 − 1 = b̂b, and so we find that
b̂b − |bz |2 = −1, putting us under the 2-sheeted hyperboloid
model of hyperbolic space.

We view our circles as lying on the border of H3, where our circles
form the boundary of geodosic hemispheres.
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Our quadratic form Q

The laws governing circle inversion allows us to easily find b̂ in
terms of b and the circle’s center z .

The new diameter will be length of line connecting these 2 points,
so

r̂ =
1

2

(
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)
In bend notation, this simplifies to

b̂b − |bz |2 = −1
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Our quadratic form Q

b̂b − |bz |2 = −1 can be expressed as
(
b̂ b bz

)
· Q ·

 b̂
b
bz

,

where

Q =


0 1

2 0 0 · · ·
1
2 0 0 0
0 0 −1 0
0 0 0 −1
... −1


adjusted according to the dimension.

This gives us a bilinear form < x , y >Q= xQyT , where
< v , v >Q= −1, putting us on the 2-sheeted hyperboloid Q = −1
in H3.
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Gram Matrices and Coxeter Diagrams

When describing a packing, we want to know about the
relationship between different spheres, specifically what angle each
sphere makes with the others. This information allows us to build
the packing (up to rescaling through inversions).

A Gram matrix can be used to encode this information.

Gi ,j = vivjQ =



−1, vi = vj

1, vi ||vj
0, vi ⊥ vj

cos(θ), θvi ,vj
cosh(d), d = hyperbolic distance(vi , vj)
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Gram Matrices and Coxeter Diagrams

A Coxeter diagram encodes the same information, minus the
hyperbolic distance between two disjoint spheres.

If i , j intersect at an angle of π
n , we draw n − 2 lines between

vertices i , j .
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Structure Theorem: Kontorovich-Nakamura

Every orbit of the group generated by reflections of a cluster
through its cocluster produces a crystallographic packing.

Moreover, every crystallographic packing is generated by
reflections of the cluster through the cocluster.
Using the Coxeter diagram, a crystallographic packing exists if and
only if there exists an isolated cluster – a vertex or collection of
vertices that are disjoint, orthogonal, or parallel to all other
vertices (which form the cocluster).
The packing arises by reflecting the circles in the cluster through
the circles in the cocluster.
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Vinberg’s Algorithm

Recall from the definition of the Coxeter diagram that it is
produced with the generators of a group of mirrors. What if a given
group of mirrors Γ acting on Hn+1 does not come with prespecified
generators?

This is where Vinberg’s algorithm comes to the rescue.
Specifically, Vinberg’s algorithm is used to compute the
fundamental domain of the group, i.e. P ⊆ Hn+1 such that for any
x ∈ Hn+1, ∃!γ ∈ Γ : γx ∈ P, and @P ′ ( P with this same property.
The data characterizing P is equivalent to the generators of Γ!
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Vinberg’s Algorithm

Devora’s work concerns the Bianchi groups
B̂i(m) := SL2(Q[

√
−m]) where m is a square-free positive integer.

H3 can be represented by the action of R+ on positive-definite
2nd-order Hermitian matrices H+

2 , and certain transformations of
elements in H2 that preserve H+

2 induce the orientation-preserving
and -reversing motions of H3, thus making these elements and
their action the group of isometries of H3.

Bianchi groups are discrete subgroups of these elements, so they
represent discrete groups of isometries of H3.

Devora studied the Bianchi groups that are generated by finite
reflections, since these can produce circle packings.
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Vinberg’s Algorithm

Zack’s work concerns the group of isometries on Hn+1 with respect

to the quadratic forms Qd =


−d

1
. . .

1

.

In both instances, the groups do not come with obvious generators,
so Vinberg’s algorithm is necessary for determining the Coxeter
diagram structure and hence whether a packing is obtainable.



Vinberg’s Algorithm

The general idea of Vinberg’s algorithm is that it takes a lattice
with a quadratic form, and returns the generators of the
automorphism group preserving the lattice.

Visually, we can view the lattice as a tiling of Hn. Vinberg’s
algorithm finds the fundamental domain, which is a polyhedron. If
the polyhedron is finite, the algorithm terminates after it has found
all the generators. Otherwise, it runs infinitely.

So how do Bianchi groups become circle packings? Using
Vinberg’s algorithm! (Much gratitude to Beloliptesky and McLeod)
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From Bianchi groups to circle packings

Bi(m) = reflective isometry group

Select quadratic form

Apply Vinberg’s algorithm

Obtain fundamental polyhedron

Describe with Coxeter diagram

Apply Structure Theorem

Generate circle packing



From Bianchi groups to circle packings

Bi(1) yields the Apollonian strip packing with either isolated vertex
due to symmetry



Integrality of Bianchi groups

There are a finite number of reflective Bianchi groups that yield
circle packings, and we catalogued all known ones this summer.

An interesting property of these packings that can be studied is
integrality. This means that the bends of all circles in the packing
are integral.

Most of the packings that arise from the reflective Bianchi groups
are, in fact, integral! (Or can be rescaled to integrality via circle
inversion.) We see this very quickly from simply generating the
packing and examining the bends empirically...

But how can we prove it?

Furthermore, if a packing is not integral, is there a way of proving
that?
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Integrality

Recall that crystallographic packings are generated by reflections of
the cluster through the cocluster. We can represent these
reflections as V .R, where V is a linearly independent matrix of the
inversive coordinates of the cluster (and part of its orbit, if needed)
and each R is a matrix corresponding to the mirror circle in the
cocluster we are reflecting through.

This formulation requires us to know EVERYTHING about the
cluster circles to know about the bends of the packing, because R
is right-acting.

But, if we could reformulate this to be a left-action, we could know
about the bends of the packing just by knowing about the bends of
the cluster! So, we are looking for Bend matrices B such that
B.V = V .R.
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the cluster! So, we are looking for Bend matrices B such that
B.V = V .R.



Integrality

If we have an integral B matrix for every reflection in the cocluster,
and V has integral bends, then the bends of the packing will
definitively be integral as well.

Although many Bianchi packings do not initially have integral
bends in V , most of them can be rescaled to integrality. And
although many corresponding Bend matrices are not integral, they
can be conjugated to integrality as well.

Devora is still working on properly conjugating all Bend matrices of
integral packings to prove integrality.
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Isolated clusters?

If you look closely, you’ll see that not all sets of generators have
isolated clusters.

Obtained by Vinberg’s algorithm applied to −x20 + x21 + x22 + x23 .

(Incorrectly) obtained from B̂i(3).



Isolated clusters?

What hope do we have to get a packing in these cases?
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Doubling

What hope do we have to get a packing in these cases?
We have at our disposal a technique known as doubling.
This entails choosing a circle in the space of the circles giving the
Coxeter diagram and doubling the entire configuration about it.
Why? Consider the group of mirrors generated before and after
doubling. The latter is a subgroup of the former, and hence this
reveals to us structure that before was inaccessible.



Doubling in B̂i(3)

One insight in Kontorovich & Nakamura’s 2017 paper was the
observation that the B̂i(3) Coxeter diagram did not represent the
full group of mirrors:
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Doubling in B̂i(3)

Through a further series of operations, we can transform the
diagram into the diagram .

However, this
was done less systematically; it primarily derived from looking
amongst the orbit of the original generators acting on themselves
until a new configuration was found, having tangencies and finite
volume.
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Volume?

What’s this you say about volume? Aren’t we looking at planar
configurations?

Yes, but there is a deep connection between the
configuration of circles in Rn and the upper half-space model of
Hn+1. Kontorovich and Nakamura proved that a crystallographic
packing corresponds to a configuration of planes with interiors
intersecting to form finite volume in Hn+1.
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Volume

Vinberg proves an algorithmic approach to verifying whether a
configuration has finite volume in this sense, which involves
checking the Coxeter diagram’s subdiagrams against the list of
known irreducible groups.



Resolving questions about existence of packings

With these tools under our belt, we are now able to start looking
at questions of whether packings exist within certain
configurations.

These techniques have allowed us to attack the
following diagrams that lack isolated clusters:
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Resolving questions about existence of packings

What’s something that all of these have in common?

They all
feature the diagram as a subdiagram! So,
if we apply the known transformation for
into , and then a suitable action on the remainder of the nodes in
the Coxeter diagram, then hopefully we will obtain a finite-volume
diagram representing one such desired subgroup of mirrors.
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Polyhedral Packings

basics: interested in combinatorially distinct polyhedra, eg
3-connected planar graphs that are not isomorphic



Polyhedral Packings:Koebe-Andreev-Thurston

KAT gives us cluster + cocluster



Polyhedral Packings: Structure Theorem (K-N)

takes us from KAT to an infinite packing, from there we can look
at bends to find integrality



Polyhedral Packings: Methods

plantri to get polyhedron data, then into code written in
mathematica that spits out supercluster, packing, inversive coords,
bend matrices,gram



Polyhedral Packings: Findings?

previously known integral polyhedra: tetrahedron, square pyramid,
hex pyramid, gluings of
(define gluings)



Polyhedral Packings: Findings?

new integral polyhedron: 6v7f 2
new rational but not integral polyhedron: 8v9f 3
plus more? (7v8f 9 and 7v9f 8?)



Polyhedral Packings: Example proof

proof of nonintegrality of 8v9f 3?
alternatively, proof of integrality (which doesn’t really exist yet) of
6v7f 2 which is probably more interesting



Polyhedral Packings: Website

pull up the website?? might be awkward
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