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Demand for Low Latency

I Webpage download
Amazon: 100ms ∼ costs 1% sales, Google: 1s ∼ page view drops 11%

I Interactive Tasks: 100ms - 150ms

I Online Gaming: 30ms

I Augmented Reality: 7ms - 20ms

I 5G, The Tactile Internet: 1ms
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Service Rates of Codes

New applications create new performance metrics for codes.
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Service Capacity Problem Formulation

System Model:
I k files F1, . . . , Fk are stored redundantly across n servers.

I The size of each file and the size of data on each server are equal.

I Time to download a file from a server is exponential with rate 1 .

I Requests to download Fi arrive at rate λi .

THE OBJECTIVE:

1. Determine the set of rates (λ1, . . . , λk) that can be supported by
the system implementing some common redundancy schemes.

2. Provide guidance on how to choose a redundancy scheme in order to
maximize and/or shape the of region of supported arrival rates.
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[3, 2] Simplex Code: (a,b)→ (a,b,a+ b)

How can requests for file a be served?

a ba+b

λa

⇒ λa 6 2

Relating to a graph covering problem:
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[2m, 2] Repetition Code

a a a a

b b b b

Service Capacity Region:
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[2m, 2] RS Code with no Systematic Nodes

a+b a+αb a+α2b

α is primitive in some Fq,q > 8

a+α3b

α is primitive in some Fq,q > 8

a+α4b

α is primitive in some Fq,q > 8

a+α5b

α is primitive in some Fq,q > 8

a+α6b

α is primitive in some Fq,q > 8

a+α7b

α is primitive in some Fq,q > 8
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A Systematic [8, 2] RS Code
a+b a+αb a+α2b a+α3b a+α4b a+α5b a b

Service capacity region:
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How About Both Coding and Replicating
a+b a+αb a a a b b b
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How About Both Coding and Replicating
a+b a+αb a a a b b b
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When λb = 0 ... •a
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How About Both Coding and Replicating
a+b a+αb a a a b b b

c •

c •

When λa, λb > 3 ... •a
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•b=⇒ λa + λb 6 7
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A General Theorem
Let there A systematic nodes for file a, B for file b, & C coded
nodes, and assume that any 2 coded nodes or a coded and a systematic
node can recover both a and b.

Then the service rate region is bounded by

λa = 0, λb = 0, λa = min
{
(A+ C)µ, (A+ B

2
+ C

2
)µ
}
, and

L(λa) =



(B+ C)µ if A > C and 0 6 λa 6 (A− C)µ

− 1
2
λa + (A

2
+ B+ C

2
)µ if A > C and (A− C)µ < λa 6 Aµ

− 1
2
λa + (A

2
+ B+ C

2
)µ if A 6 C and 0 6 λa 6 Aµ

−λa + (A+ B+ C
2
)µ if Aµ < λa 6 (A+ C

2
)µ

−2λa + (2A+ B+ C)µ if B > C and (A+ C
2
)µ < λa 6 A+ C

−2λa + (2A+ B+ C)µ if B 6 C and (A+ C
2
)µ < λa 6 (A+ B

2
+ C

2
)µ.

Dagstuhl development:
Gven a service region, find A, B, C s.t. A+ B+ C is minimal.
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Locally Repairable Codes (LRC) with Availability

A code has (r, t) availability if
I there are t disjoint repair groups for each data symbol &

I each repair group has at most r symbols.

A (2, 3)-availability code:

{a,b, c} −→ { a , b , c , a+ b , b+ c , a+ c , a+ b+ c }

The minimum distance penalty for an [n,k] code with (r, t) availability is

dmin 6 n− k+

⌈
t(k− 1) + 1

t(r− 1) + 1

⌉
+ 2

There are code alphabet dependent bounds.
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A Simplex Code Example

{a,b, c} −→ { a , b , c , a+ b , b+ c , a+ c , a+ b+ c }

The [7, 3, 4] Simplex code is a (2, 3)-availability code:

G3 =

0 0 1 0 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1
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Repair groups for position 1 are {2&3, 4&5, 6&7}

(any two columns of G that sum to 1)
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The Binary Simplex Code Sm, m > 2

I Gm consist of all distinct nonzero vectors of Fm
2

I Sm is a [2m − 1,m, 2m−1] binary code.

I Sm has locality r = 2 and availability t = 2m−1 − 1.

Why do we care about these codes?
Considering rate, alphabet size, minimum distance, locality, availability,
the binary simplex codes are in certain sense optimal.
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[7, 3] Simplex Code
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[2m − 1,m] Simplex Code

Theorem:
The service capacity region of the [2m − 1,m] Simplex coded system
consists of all λ1, . . . , λm s.t. λ1 + · · ·+ λm 6 2m−1µ.

Proof Sketch for the Achevability:

Note that λi 6 2m−1µ. Each server dedicates the fraction λi/(2m−1µ)

of its capacity solely to serving requests for file Fi.

[7, 3] simplex code:
a

λa →

λb →

b c a+ b b+ c a+ c a+ b+ c
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[2m − 1,m] Simplex Code

Theorem:
The service capacity region of the [2m − 1,m] Simplex coded system
consists of all λ1, . . . , λm s.t. λ1 + · · ·+ λm 6 2m−1µ.

Proof Sketch for the Converse:

We consider graph Γm with 2m − 1 vertices labeled by all non-zero
vectors of Fm

2 . Two vertices are connected iff their labels differ by 1. =⇒
Γm is a complete bipartate graph. The 2m−1 vertices with odd number of
1s cover each edge (recovery group) exactly once.

[7, 3] simplex code:

001 010 100 111

011 101 110
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What about Systematic [n,k] MDS Codes?

What about 1) water filling or 2) sharing?
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Systems Issues
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Systems Issues
Cost:

Coverage and Utilization:

and Σ robustness (related to Batch codes).
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